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ABSTRACT

Large-eddy simulations (LES) and implicit LES (ILES) are wise and affordable alternatives to the unfeasible direct

numerical simulations (DNS) of turbulent flows at high Reynolds numbers (Re). However, for systems with few

observational constraints, it is a formidable challenge to determine if these strategies adequately capture the physics of

the system. Here we address this problem by analyzing numerical convergence of ILES of turbulent convection in 2D,

with resolutions between 642 and 20482 grid points, along with the estimation of their effective viscosities, resulting

in effective Reynolds numbers between 1 and ∼ 104. The thermodynamic structure of our model resembles the solar

interior, including a fraction of the radiative zone and the convection zone. In the convective layer, the ILES solutions

converge for the simulations with ≥ 5122 grid points, as evidenced by the integral properties of the flow and its power

spectra. Most importantly, we found that even a resolution of 1282 grid points, Re ∼ 10, is sufficient to capture the

dynamics of the large scales accurately. This is a consequence of the ILES method allowing that the energy contained

in these scales is the same in simulations with low and high resolution. Special attention is needed in regions with

a small density scale height driving the formation of fine structures unresolved by the numerical grid. In the stable

layer we found the excitation of internal gravity waves, yet high resolution is needed to capture their development and

interaction.
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1. INTRODUCTION

Turbulent convection is ubiquitous in astrophysics and

geophysics, taking place in planetary atmospheres and

oceans, and inside stars. It is a non-linear problem

for which analytic solutions are scarce and limited in

scope. On the other hand, laboratory experiments are

able to explore only a fraction of the parameter space

spanned by convection in nature. Thus, many scien-

tists turn to computer simulations to investigate this

phenomenon. The simulations are carried out for ideal

situations, such as Rayleigh-Bénard convection (Stevens

et al. 2018; Sakievich et al. 2016), as well as for several

cases observed in nature ranging from stellar convection

(e.g., Elliott & Smolarkiewicz 2002; Brandenburg et al.

2005; Featherstone & Hindman 2016; Guerrero et al.

2016a,b; Kitiashvili et al. 2016; Käpylä et al. 2019) to

the Earth’s and planetary atmospheres as well as oceans

and mantle currents (Ganot et al. 2014; Peña-Ortiz et al.

2019; Wang et al. 2019).

The simulations resolving all the relevant scales of the

flow are called direct numerical simulation (DNS). In

DNS, the resolved scales range from the largest scale

to the smallest Komolgorov scale, at which dissipation

occurs. In high Reynolds number systems, such as in

the Solar convection zone, the ratio between the largest

and the smallest scales is extremely large. Consequently,

to capture all relevant scales, the domain discretization

must be excessively fine (ND ∼ Re3D/4, where N is

the number of grid points, and D is the number of spa-

tial dimensions, Pope 2011). These simulations are still

unfeasible for modern supercomputers. The expecta-

tion is that with progressively increasing the resolution

the prognostic variables reach an asymptotic regime of

convergent values for ND � Re3D/4. This would mean

that the relevant scales for a given system are larger than

the Kolmogorov scale, and that the dissipative processes

are governed by turbulence. For instance, the reality of

the concept of turbulent viscosity for solar convection

was proposed by Schwarzschild (1959) to explain the

first observations of solar granulation, arguing that the

Reynolds number of these motions must be O(1) (see

also Stothers 2000; Canuto 2000).

Of course, dissipation is not the only contribution of

turbulence, which poses a problem for DNS. Given the

restricted numerical resolution, suitable values for the

dissipation coefficients, i.e., dynamic viscosity (ν), heat

conduction (κ) or magnetic diffusivity (η), in hydrody-

namic and magnetohydrodynamic simulations of con-

vection, are typically orders of magnitude larger than

the theoretical estimations of collisional transport co-

efficient in gas and plasma. Even though in DNS the

explicit values of these parameters approach those esti-

mated for turbulent dissipation coefficients, the results

do not seem to achieve this asymptotic regime. For in-

stance, Featherstone & Hindman (2016) performed DNS

of solar convection in spherical shells progressively in-

creasing the Rayleigh (Ra) number. While they found

that the energy becomes independent of the heat con-

duction after a certain value of the Rayleigh number

Ra, neither the spectral distribution of energy nor the

radial profile of the vertical velocity indicated numerical

convergence. In other words, it is unknown to what ex-

tent the numerical models of this phenomenon represent

reality.

An alternative to DNS is the large eddy simulations

approach (LES). In LES, all the scales down to the nu-

merical cut-off scale are simulated, while the action of

unresolved scales is parametrized using the simulated

values and turbulence scaling laws. It is a well-founded

assumption when the unresolved turbulent flow is scale-

invariant. However, this condition is not entirely ful-

filled in convective systems with strong density strati-

fication, rotation and/or other factors making the mo-

tions anisotropic (Elliott & Smolarkiewicz 2002). By

using implicit large-eddy simulations (ILES), the contri-

bution of the unresolved scales can be modeled by spe-

cially designed finite-difference truncation terms of the

numerical advection. In the ILES methodology these

terms act as an effective dissipation, e.g., effective vis-

cosity for the transport of momentum, and as an energy

flux between scales (Margolin & Rider 2002).

The numerical convergence of ILES simulations is not

easy to define. Since the terms in ILES would be trun-

cated at a different scale, changing the spatial resolu-

tion of the simulation would necessarily affect the re-

sults. Thus, the numerical convergence in such a sit-

uation is scale-dependent, as for increasing numerical

resolution the large scale properties of the flow remain

unaltered while more and more small scale structures

develop. Therefore, in this respect, the ILES approach

is different from the LES, and requires a detailed in-

vestigation of the numerical convergence for particular

classes of models.

This study explores the numerical convergence in

ILES 2D simulations of turbulent stratified convection,

which mimics the solar convection zone. We do not aim

to compare the results to any particular analytical so-

lution or observations of a physical system, but explore

whether the integral characteristics of a numerical model

reach a converged state when the resolution increases.

The initial and boundary conditions of our model resem-

bles the solar convection zone, turbulent characteristics

of which are still uncertain and currently debated (Hana-

soge et al. 2016; Greer et al. 2015). In this work numeri-
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cal convergence will be evaluated in terms of the vertical

profiles of temporally and horizontally averaged quanti-

ties, like the turbulent velocities and the convective heat

flux. The distribution of energy along the different spa-

tial scales resolved for each grid is assessed through the

turbulent spectra of the kinetic energy and the variance

of potential temperature. An approximated analysis of

the effects of the ILES method on the dynamics of the

system is performed from the estimation of an effective

viscosity as a function of the scale. We compare this

quantity with the turbulent viscosity which is a rough

measure of the enhancement of transport of momentum

and other physical quantities by turbulence. It is com-

puted here from the length and time scales of the most

energetic motions. Finally, the unexpected development

of oscillatory mean horizontal motions in the stable layer

will also be presented.

A similar convergence study was performed by Porter

& Woodward (1994), who used the ILES scheme based

on a piecewise parabolic method (PPM Colella & Wood-

ward 1984), devoid of explicit viscosity in the momen-

tum equation, and reached resolutions up to 1024× 256

grid points (corresponding to Re ∼ 2×104). They found

that at lower resolutions the vertical size of the convec-

tion cells occupy the entire convection zone. For the

highest resolution models, the small eddies break down

the large cells resulting in a flow dominated by struc-

tures of all sizes but without large-scale convection cells.

In the 3D simulations, they modified the upper thermal

boundary condition allowing for the temperature to be

constant in space but change with time (Porter & Wood-

ward 2000). They observed convergence in the results

for their high-resolution cases. Sullivan & Patton (2011)

presented a convergence analysis for 3D LES simulations

of the Earth convective boundary layer. They found

that numerical convergence is achieved whenever there

is enough scale separation between the most energetic

eddies and those with scales close to the cutoff of the

LES scheme. Besides the global convection simulations

of Featherstone & Hindman (2016) described above, to

our knowledge DNS of stratified turbulent convection

have not explored the role of resolution.

Three-dimensional simulations provide a better repre-

sentation of the convection zone dynamics. For instance,

in the presence of rotation and magnetic fields, the col-

lective 3D effects of turbulence include the generation

of large scale flows and dynamos. Most of these effects

either do not exist or take a different form in 2D con-

vection. Nevertheless, the influence of the finest scales

on the largest scales is worth exploring, as it sheds light

on turbulent convection as well as on the capabilities of

ILES. In this work, we focus on 2D convection which al-

lows for higher resolutions, while leaving 3D simulations

for future studies.

This paper is organized as follows. In Section 2, we

describe the equations, the numerical model, and other

ingredients used to simulate turbulent convection. In

Section 3, we perform the convergence analysis by vary-

ing the numerical resolution. Finally, in Section 4, we

present our concluding remarks.

2. NUMERICAL MODEL

We used the EULAG-MHD code (Smolarkiewicz &

Charbonneau 2013)–a specialized variant of the origi-

nal EULAG code (Prusa et al. 2008)–to perform two-

dimensional convection simulations in a rectangular do-

main. EULAG-MHD is based on the multidimensional

positive-definite advection transport algorithm, MP-

DATA (Smolarkiewicz 2006). It is a non-oscillatory

forward-in-time advection solver with second-order ac-

curacy in space and time. The code allows simulations

to be run as ILES without any explicit dissipation (note

that it also may be used for DNS with explicit dissipa-

tion). In the current model setup the vertical coordi-

nate, z, spans from 0 to Lz = 254 Mm (covering most of

the depth of the solar convection zone and upper layers

of the radiative zone), while the horizontal coordinate,

x, spans from 0 to Lx = 2.5Lz. The number of grid

points is the same in the vertical and horizontal direc-

tions in each simulation. We solved the following set

of Navier-Stokes equations governing mass, momentum

and energy conservation,

∇ · ρru = 0, (1)

du

dt
= −∇π′ − g

Θ′

Θr
, (2)

dΘ′

dt
= −u · ∇Θa − αΘ′ (3)

where d/dt = ∂/∂t + u · ∇, u is the velocity field,

ρr is the reference state density, which in the anelas-

tic approximation is a function of the vertical coordi-

nate only (Lipps & Hemler 1982); π′ is the density

normalized pressure perturbation, p′/ρr; g = −gẑ is

the gravity acceleration adjusted to fit the solar grav-

ity profile, and Θ is the potential temperature defined

as Θ = T (Pb/P )
R/cp , where T is the temperature, P

is the pressure, Pb is the pressure at the bottom of the

domain, R is the universal gas constant, and cp is the

specific heat at constant pressure. The potential tem-

perature is equivalent to the specific entropy through the

relation ds = cpd(ln Θ). The subscripts r and a refer to

the reference and ambient states, and the superscript ′
means perturbations of a quantity around the ambient
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Figure 1. (a) Vertical profile of the ambient potential tem-
perature, Θa. The insert shows a close-up for 0.1Lz < z <
Lz. (b) Vertical profiles of the ambient density (black line)
and temperature (red line). The dotted lines correspond
to the solar structure model of Christensen-Dalsgaard et al.
(1996).

profile. Perturbations of potential temperature are re-

lated to perturbations of temperature by the anelastic

approximation to the equation of state, T ′ = Θ′Ta/Θa.

The energy equation contains a term forcing the adia-

batic perturbations about the ambient state and a ther-

mal relaxation term that dampens these perturbations

in a time scale α = 1/τ . In this setup, while the forcing

term tries to mix the fluid in the convection zone, the

thermal relaxation keeps the convective unstable state in

this layer (see Cossette et al. 2017, for a comprehensive

analysis of these effects).

The ambient state defining the thermodynamic vari-

ables, ρa, Θa, and Ta in Equations (1) - (3) is a par-

ticular solution of the hydrodynamics equations. In this

work we construct the ambient state considering hydro-

static equilibrium as follows,

∂Ta
∂z

= − g

R(m+ 1)
, (4)

∂ρa
∂z

= − ρ

Ta

(
g

R
+
∂Ta
∂z

)
, (5)

where m = m(z) is the polytropic index. Solutions of

Equations (4) and (5) with m ≥ 1.5 correspond to sta-

ble stratification, while solutions for m < 1.5 correspond

to convectively unstable states.

We use an ambient state with a stable layer at the bot-

tom of the domain by setting ms = 2.5 for z ≤ 0.28Lz,

and a marginally unstable convection zone with mu =

1.499991 for z > 0.28Lz. This is achieved by considering

a radial profile of the polytropic index,

m(z) = ms −
1

2
(ms −mu)

[
1 + erf

(
z − z1

w

)]
, (6)

where the transition between zones of different m is

made through the error functions with z1 = 0.28Lz and

w = 0.041Lz. Equations (4) and (5) are integrated

numerically with ρz1 = 208 kg/m3 and Tz1 = 2.322×106

K at the interface between the stable and the unstable

layers, R = 13732 J K−1 kg−1 is the gas constant for

a monoatomic hydrogen gas, and cp = 2.5R. The pres-

sure is computed via the ideal gas equation of state,

Pa = RρaTa. The resulting vertical profile of Θa is

shown in Figure 1(a). In the convective zone, the slope

of Θa is slightly negative with respect to the z coordinate

as it can be seen in the figure insert. The negative slope

of Θa ensures that this zone is unstable to convection,

with the difference of Θa between the bottom and top

of the convectively unstable layer being 18 K. The refer-

ence potential temperature Θr = Tz1 . Finally, for all the

simulations, we have considered α = 1/τ = 1.29× 10−8

s−1.

The stable zone at the bottom of the domain ensures a

more realistic transition between the two layers, allowing

a certain amount of overshooting. This closely resembles

situations in nature where convection happens in contact

with a stable but not totally rigid layer. As we show

below, the dynamics in this stable layer is governed by

internal gravity waves (GW), which induce horizontal

motions and react back on the convection properties.

Figure 1(b) shows the vertical profiles of the density, ρa,

and the temperature, Ta. The domain encompasses 4.5

density scale heights.

The boundary conditions for this setup are defined as

follows. In the horizontal direction, we consider periodic

boundaries for all variables. In the vertical direction,

stress-free and rigid boundary conditions for the veloc-

ity field are considered respectively at the bottom and

top of the domain. Null convective radial flux is consid-

ered as thermal boundaries at the bottom and top as it

has been used in previous works in the literature (e.g.,
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Fan et al. 2003; Hotta et al. 2015). The initial condi-

tions are white noise correlated perturbations in both,

uz and Θ′, introduced only in the unstable layer and

with amplitudes 5× 10−4 m/s and 5× 10−4 K, respec-

tively. In the next section, we explore the properties of

physical quantities (in the real and spectral space) re-

sulting from the simulations with the setup described

above but for different resolutions, namely N = 64, 128,

256, 512, 768, 1024, and 2048 cells in each direction. All

the simulations were run for at least 60 years. This time

is sufficient for the simulations to reach an statistically

steady state, and to provide enough data for the anal-

ysis. The parameters and results of the simulations are

summarized in Table 1.

3. RESULTS

3.1. Analysis in physical space

Figure 2 shows snapshots of the vertical velocity for

simulation (a) FD64, (b) FD256, (c) FD768 (c), and (d)

FD2048. The yellow and blue contours represent up-

flows and downflows, respectively. The canonical picture

of convection in the environment with a unstably strat-

ified density profile describes broad upflows and nar-

row downflows. The figure shows that this feature is

well captured by the 2D convection model for low and

high resolutions, forming two or three large convective

cells. Unlike previous ILES results (Porter & Woodward

1994), in the higher resolution simulations (N ≥ 512),

these large cells are not broken by the small-scale struc-

tures but coexist with them. The strong downflows seem

to be formed by the coalescence of thinner plumes ob-

served at the upper part of the domain.

Figure 3 shows uz rms (a), ux rms (b), urms =√
u2
x + u2

z (c), and the convective flux, Fc = cpρrΘ
′w

(d) as a function of the vertical coordinate z. The rms

profiles correspond to averages over the horizontal direc-

tion and time during the last 15 years of the simulations.

The profiles of panel (a) are consistent with similar sim-

ulations presented in the literature for 2D simulations

(Hotta et al. 2012), i.e., the vertical velocity has a peak

close to the bottom of the domain. In 3D simulations,

compatible to the ones presented here, this maximum

is shifted towards the top (e.g., Chan & Sofia 1986; Fan

et al. 2003; Hotta et al. 2012). Except for the amplitude,

there is no significant change in this profile for different

resolutions, and simulations with N ≥ 512 seem to have

reached convergence in the location and the value of

the maximum value. The profiles of horizontal velocity

exhibit significant variations with resolution. For the

low-resolution simulations (N ≤ 128), ux rms has two

maxima, at the upper and lower parts of the convective

layer, and a minimum at z ∼ 135 Mm. The maxima cor-

respond to fluid displacements in the opposite direction

of the large eddies, whereas the minimum corresponds

to the radius where the reversal takes place. In the

lower part of the convection zone, this motion has a

smaller vertical extension than in the upper part as a

consequence of density stratification. When the reso-

lution increases, the profile of ux rms becomes flattened

with less prominent maxima and minima. This can be

explained by the small scale structures developed in

large resolution simulations, see Fig. 4(b) correspond-

ing to simulation FD1024 as contrasted to the smooth

large eddies observed in the low resolution simulations,

see Fig. 4(a) corresponding to simulation FD64. In the

upper layers, the shorter density scale heights enforces

smaller convective structures. For the simulation with

N = 64, there are 8 or less grid points per density

scale height, which is insufficient to resolve small-scale

convective motions, resulting in larger convective cells.

Thus, the horizontal flows have another reversal which

on average forms a second minimum above z ∼ 250 Mm

(see dark grey line in Fig. 3(b) and also the upper part

of Fig. 4(a)). On the other hand, the simulations with

N > 512 have at least 32 grid points per density scale

height and are able to resolve these structures with the

appropriate energy (see, for instance, Figs. 2(d-f) and

4(b)). After the temporal and horizontal averaging,

these cells are wiped out, and the minimum disappears.

Another interesting feature observed in the horizon-

tal velocity is their depth of penetration which increases

with the numerical resolution. Additionally, there is a

sharp peak evident in the cases FD1024 and FD2048,

which is formed due to generation of internal gravity

waves in the stable layer. These waves start to become

evident in simulations with N > 256 whenever strong

downflows induce perturbations in the stable zone (these

perturbations are evident in Fig. 4(b), after some magni-
fication of the figure, below the white dashed line). How-

ever, they are evanescent and dissipate on time scales

depending on the numerical resolution. The waves ap-

pear to be resolved only in the simulations with 2562

grid points or greater. For the simulations FD1024 and

FD2048, the effective viscosity is so small (see §3.3) that

the perturbations induced by the gravity waves do not

dissipate. Instead, they interfere, and upon a spon-

taneous symmetry breakdown interact non-linearly to

form mean horizontal flows (Galmiche et al. 2000; Wedi

& Smolarkiewicz 2006), evidenced in Fig. 3(b) by the

peaks with magnitudes that increase with the resolu-

tion. For some resolutions these motions create oscilla-

tory patterns; see §3.5 for a discussion.

The profiles presented in Fig. 3(c) are combinations

of the corresponding motions depicted in panels (a) and
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Table 1. Simulation parameters and results

Simulation N 〈urms〉 [m/s] νeff [×109 m2/s] Reeff ` [Mm] νt [×109 m/s2 ]

FD64 64 34.0 9.8983 0.7174 42.7 0.484

FD128 128 37.5 0.9820 7.9923 46.5 0.583

FD256 256 40.4 0.0764 110.56 48.2 0.651

FD512 512 41.9 0.0115 758.77 52.3 0.732

FD1024 1024 43.5 0.0033 2698.7 51.8 0.754

FD2048 2048 43.8 0.0013 6933.6 51.2 0.749

Note—Results of simulations FD with different resolutions, N . In 〈urms〉 the velocity is
averaged in space and time, The effective viscosity, νeff is the average over the largest
wavenumbers, k. The effective Reynolds number, Reeff = 〈urms〉L/overlineνeff . The
convective correlation length, `, is calculated from averages of the kinetic energy spectra
at different times according to Eq. 15. Finally, 〈urms〉 and ` are used to compute the
turbulent viscosity, νt, following Eq. 16. The spatial averages were calculated for the
convectively unstable layer only (0.3Lz < z < Lz).

Figure 2. Snapshots of vertical velocity for simulations (a) FD64 to (f) FD2048. Yellow (blue) colors correspond to upflows
(downflows). The label of each simulation is shown on the top of each image.
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Figure 3. Vertical profiles of the (a) vertical; (b) horizontal; (c) total rms velocities; and (d) the convective heat flux,
Fc = ρacp〈uzΘ′〉 for simulations FD64-FD2048. Different resolutions are represented by different colors indicated in panel (a).

Figure 4. Snapshots of horizontal velocities for simulations (a) FD64, and (b) FD1024. Yellow (blue) contours indicate
horizontal flow towards the right (left).
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Figure 5. Snapshots of perturbations of potential temperature residual, Θ′ − 〈Θ′〉z, for different resolutions. Red contours
indicate positive values (hot plumes), blue contours correspond to negative values (cold plumes). The black streamlines show
the velocity field with the arrows pointing in the direction of the flow.

(b). Their resemblance to the profiles in panel (b) re-

flects the fact that the horizontal motions are dominant

in the convection zone. Finally, the convective heat flux

presented in Fig. 3(d) exhibits negative values at the

bottom of the convective layer identified with penetra-

tive motions. The higher the resolution the larger the

extent of the overshooting region. On the other hand,

the profiles with positive values in the convection zone

show that the averaged heat flux carried by convection

decreases with N and seems to reach convergent values

for N > 512.

Figure 5 shows snapshots of the residual of the poten-

tial temperature perturbations, Θ′−〈Θ′〉z, with the an-

gular brackets meaning vertical average, superimposed

with streamlines of the velocity field for all simulations.

For a better contrast of the structures we have removed

the stable layers from the figures. Note that increas-

ing the resolution allows for progressively more intricate

structures in the form of filaments following the edges

of convective eddies. These filaments form spikes and

swirls due to the fluid movement until they dissolve.

3.2. Analysis in the Fourier space

To explore further the turbulent characteristics of the

convective motions we compute the kinetic power spec-

trum, ẼK(k, z), and the turbulent spectrum of the vari-

ance of Θ′. The one dimensional, temporally averaged,

kinetic power spectrum is defined as

ẼK(k, z) =
1

2
ũ(k, z)∗ũ(k, z), (7)

where k is the wave number in the x direction, the tilde

denotes the Fourier transform of a quantity, and the as-

terisk denotes complex conjugate. The temporal average

is performed considering the last 15 years of evolution

with a sampling rate of 4 months. The power spectrum

of the variance of potential temperature, ẼΘ(k, z), is

defined analogously by replacing ũ(k, z) by Θ̃′(k, z) in

Eq. (7). Since we expect the properties of convection to

depend on the height, we perform this computation for

the top and the middle of the convection zone, z = 223

and z = 139 Mm, respectively.

A comparison of the kinetic power spectrum of simula-

tions with different resolutions is presented in Fig. 6 for

z = 223 Mm (a) and z = 139 Mm (b) as a function of the

wavenumber; panels (c) and (d) display the power spec-

trum of the variance of potential temperature, ẼΘ(k, z)

for the same heights.

In 3D isotropic turbulence, ẼK(k) and ẼΘ′
(k) scale

according to the Kolmogorov law, as k−5/3 (Kolmogorov

1941; Obukhov 1959, hereafter KO scaling). In the

presence of the buoyancy force, but still for isotropic

motions, the scaling should be ẼK(k) ∼ k−11/5 and

ẼΘ′
(k) ∼ k−7/5 (Bolgiano Jr. 1959; Obukhov 1959,

hereafter the BO scaling). Our simulations are in 2D

and the motions are clearly anisotropic as it can be ob-

served in Fig. 2. Therefore, none of the scaling laws

above should be applicable. Nonetheless, for the sake

of comparison the black dashed lines in Fig. 6 compare

these scaling laws with the scaling found for the inertial
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range in our simulation with N = 1024 (in red). At

both heights the kinetic and thermal spectra are closer

to the BO than to the KO scaling laws.

It is noticeable that the kinetic spectra at the up-

per levels of the convection zone, panel (a) have inertial

range starting at almost the largest scales, whereas in

the middle of the convection zone, panel (b), the inertial

range starts at k ∼ 10−7 m−1. As expected, the inertial

range extends over more wavenumbers as the resolution

increases, reaching the dissipative Kolmogorov scale at

the smallest resolved scales. The scaling law of the en-

ergy in the inertial range changes from one depth to the

other. This change might be a manifestation of differ-

ences in the anisotropy of convective motions at different

depths. Except for the simulation FD64, there is a good

agreement between results of different simulations in the

kinetic power in most of the inertial range at z = 223

Mm and at the large scales, k . 10−7 m−1, for z = 139

Mm. Our results are in contrast to the DNS simulations

performed by Featherstone & Hindman (2016), where

the large scales lose energy when the dissipative coef-

ficients are diminished and smaller scales are resolved.

However, there is an agreement between our findings,

i.e., convergence of the spectra for the large scales, and

the results of the LES simulations of (Sullivan & Patton

2011). This suggests that SGS or implicit SGS methods

properly capture the inverse energy cascade from the

smaller to the larger scales.

The profiles of ẼΘ′
(k) in Fig. 6(c) present evidence

of the lack of resolution discussed above in simulations

FC64-FC256 at the upper layers of the domain where the

density scale height is small. It is manifested in excess of

energy at all scales for FC64 and at intermediate scales

for FC128 and FC256. On the other hand, simulations

FC512-FC2048 show convergence in the inertial range

of the power spectra. In the middle of the convection

zone, where the density scale height is larger, most of the

simulations have similar power spectra, differing only in

the extent of the inertial range (see panel d).

3.3. Numerical viscosity

We estimate the effective viscosity, νeff , for the simu-

lations with all the tested resolutions. There are several

techniques to conduct this calculation for ILES simula-

tions, most of them performed with the physical quan-

tities represented in the Fourier space (e.g., Zhou et al.

2014), but some methods also perform this computation

in both physical and spectral spaces (Schranner et al.

2015). Domaradzki et al. (2003) presented a method to

compute the numerical viscosity for an EULAG simula-

tion of decaying turbulence. Here we adapt the method

implemented by Domaradzki et al. (2003) and developed

later for convection simulations in spherical coordinates

by Strugarek et al. (2016) to our Cartesian 2D simula-

tions. Besides providing the profile of νeff as a function

of the wave numbers for each resolution, i.e., the amount

of viscosity for different scales, the method allows a clear

comparison of this quantity as the numerical resolution

varies.

To estimate the effective viscosity we Fourier trans-

form all terms in Eq. (2) , and take the dot product

on both sides with ρru
∗
k, where uk = u(t, k, z). Then,

we average the resulting equation with respect to t and

z, and add the contribution of the effective viscosity to

obtain the following equation,

∂εk
∂t

= Ak + Pk + Gk +Dk(νeff) (8)

where the kinetic density energy term is given by

εk =
1

2
〈ρuk · u∗k〉, (9)

while the terms corresponding to advection, pressure,

gravitational potential energy and the effective viscous

dissipation rates are, respectively, given by

Ak = −〈ρr [(u · ∇)u]k · u∗k〉, (10)

Pk = −〈ρr(∇π′)k · u∗k〉, (11)

Gk = −
〈
ρrg

(
Θ′

Θr

)
k

· u∗k
〉
, (12)

and

Dk(ν) =

〈{
∂

∂xj

[
2ρrν

(
e− 1

3
δij∇ · u

)]
êi

}
k

· u∗k
〉
,

(13)

where 〈·〉 means the average over z and time.

If the averages are taken during the statistically steady

state and over a long period of time, the left-hand side

of Equation (8) is approximately zero. Thus, dividing

the remaining equation by −Dk(ν = 1), reorganizing,

and overlooking the fact that νeff might be dependent

on the space coordinates, we obtain an estimate of the

effective viscosity of the system,

Ak + Pk + Gk
−Dk(ν = 1)

=
−Dk(ν = νeff)

−Dk(ν = 1)
= νeff(k). (14)

The reader should be aware of the several approxima-

tions made to compute what we call numerical or effec-

tive viscosity throughout this paper. In ILES the SGS

viscosity is nonlinear, intermittent in space and time.

On the other hand, our estimate for this contribution,
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Figure 6. Power spectra of the kinetic energy, upper panels, and the variance of potential temperature, bottom panels, for
different numerical resolutions. Panels (a) and (c) correspond to the upper part of the domain, z = 223 Mm; and panels (b)
and (d) to the middle of the convection zone, z = 139 Mm. The black dashed lines are guides to the KO and BO scaling laws,
and the red dashed lines correspond to the adjusted scaling for simulation FC1024 in the inertial range.

νeff , is considered constant with the depth and results

from spatial and temporal averages. Furthermore, in

the MPDATA algorithm implemented in the EULAG-

MHD code, besides the dissipative terms, there are dis-

persive SGS contributions, effectively responsible for in-

verse cascades (Margolin & Rider 2002). These terms

are evidently not captured by Eq. (13). Therefore, νeff

is an integral measure of the SGS viscosity which also

embodies other sub-grid scale contributions implicit in

the numerical technique.

In Fig. 7(a) we present νeff(k) for the simulations with

different resolutions. For the large scales, k < 10−7

m−1, νeff decreases from 109 m2/s to 6 × 107 m2/s.

The difference in νeff between the different simulations

decreases as the resolution increases. For simulations

FD64 to FD256, the profiles of νeff have a minimum for

the intermediate scales and an increase for the small-

est scales. Qualitatively, these profiles resemble the

results of Domaradzki et al. (2003). The profiles ob-

tained by Strugarek et al. (2016) for a global simula-

tion with 51 × 64 × 128 grid points also show increas-

ing effective viscosity for large wave-numbers. However,

in their more sofisticated three dimensional procedure

they obtain large errors for the low wave-numbers and

disconsider the results for these scales. A comparison

of the values of νeff averaged over large wavenumbers

shows quantitative agreement between the results of

Strugarek et al. (2016, 2018) and our simulations FD128

and FD256. The results of Strugarek et al. (2018) show

that the effective viscosity depends on the strenght of

convection, the density constrast and/or rotation. Yet,

this dependency is weak when compared to the changes

found here for different resolutions.

For the cases FD256 to FD2048, there is an inter-

mediate range of k, for which νeff is the same for all

resolutions. For the smallest scales, it has decreasing

values with the increase of the numerical resolution. For

FD512-FD2048, the profile of νeff does not increase but

remains roughly constant. The Fig 7(a) shows error bars

for this estimation multiplied by 2 to make them distin-

guishable. The error is computed as σ/
√
n, where σ is

the standard deviation of the temporal average and n is

the number of temporal samples used in the computa-

tion corresponding to the last 15 yr of the simulations.



AASTEX Convergence in ILES of convection 11

10−8 10−7 10−6 10−5

k

106

107

108

109

1010

ν e
ff

[m
2
/s

]
(a)

FD64

FD128

FD256

FD512

FD1024

FD2048

26 27 28 29 210 211

N

106

107

108

109

1010

ν
[m

2
/s

]

(b)

νeff

νt

∝ N−2.7

Figure 7. (a) Effective numerical viscosity as a function
of the wave number, k, for simulations with different resolu-
tions; (b) effective numerical viscosity (black points) of the
smallest resolved scales and turbulent viscosity (red) versus
the resolution, N . Upper and bottom panels show vertical
error bars multiplied by a factors of 2 and 10, respectively, to
make them noticeable. The black dashed line shows a fitted
power law as indicated in the legend.

Thus, n is of the order of 50, for the considered sampling

times.

The magnitude of the effective viscosity averaged over

the largest wave numbers resolved for each simulation,

i.e., over the Kolmogorov scales, is presented in Table 1

and depicted in Fig. 7(b) as a function of N . It de-

creases as the resolution increases following a power law,

νeff ∝ Nα, with exponent α = −2.7. However, the

power is higher for the low-resolution cases and smaller

for simulations with N > 512. With the value of νeff

and urms (see Table 1) we can compute an effective

Reynolds number, Reeff = urmsL/νeff (with L = 0.3R�,

i.e., the size of the convection zone), reached by the sim-

ulations. Its values go from ∼ 1 to ∼ 7 × 103, and its

variation as a function of N , presented in Fig. 8, follows

a power law Reeff ∝ N2.7.

3.4. Turbulent Viscosity

Even though the effective viscosity decreases with the

resolution following a power law, Figs. 3 and 6 evidence

convergence of the simulation results. This implies that,

despite the smallest values of νeff in the high-resolution

cases, the dynamics of the system is governed by an en-

hanced dissipation, likely provided by turbulence, which

efficiently transports momentum and heat. The turbu-

lent viscosity, νt, depends on the time and spatial scales

of the most energetic eddies, which are model-dependent

quantities. They are sensitive to variations in the do-

main’s aspect ratio, the ambient state and the time scale

of the thermal relaxation (Cossette & Rast 2016). In this

section, we determine νt to verify if it also depends on

the resolution and how its values compare with those of

νeff .

To do so, we calculate first the turbulent correlation

length of the convective motions using (Pope 2011),

` =

∫
Ẽ(k)/kdk∫
Ẽ(k)dk

. (15)

Equation (15) can be seen as a weighted average of

the inverse of the wavenumbers, where the weights are

given by the kinetic energy. Therefore it provides the

typical length of the most energetic convective eddies.

Their values vary between ∼ 40 and ∼ 50 Mm as pre-

sented in Table 1.

With the correlation length, `, we estimate the turbu-

lent viscosity as (see, e.g., Kitchatinov et al. 1994)

νt =
1

3
`urms. (16)

The values of νt as a function of N are presented as red

points in Fig. 7(b). They slightly rise as the resolution
increases from ∼ 5 × 108 to ∼ 8 × 108. These values

have the same order of magnitude of recent estimations

of the turbulent magnetic diffusivity due to granulation

and supergranulation in the solar surface (Skokić et al.

2019) which suggest that our model parameters are in

an appropriate regime.

The variance of νt for different resolutions is rather

small when compared to the changes of νeff which span

about 4 orders of magnitude. As a consequence, the

Reynolds number computed from the turbulent viscos-

ity remains roughly constant with values ∼ 13 while the

effective Reynolds number increases 4 orders of magni-

tude, see Fig. 8. From Fig. 7(b), it can be seen that only

the simulation FD64 has effective viscosity considerably

larger than the turbulent one. For all the other cases,

νt > νeff implies that the system is governed by the large

scales. The relevant question is, why do these scales,
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especially in the bulk of the convection zone, have simi-

lar spatio-temporal correlations regardless of the resolu-

tion? The results presented in sections 3.1-3.3 indicate

convergence for simulations FD512-FD2048 with well-

resolved dynamics. For simulations FD128 and FD256,

the agreement is not perfect, but the large scales behave

alike. This might be a consequence of the implicit SGS

contribution towards the dynamically dominant scales.

The different profiles of νeff(k) between these two sets

of simulations provide some support to this hypothesis;

note the increasing values of νeff for the smallest scales

in models with N = 128, 256.

27 29 211

N

100

101

102

103

104

R
e

Reeff

Ret

∝ N 2.7

Figure 8. Effective Reynolds number (black points) and
turbulent Reynolds (red) number as a function of the reso-
lution. The black dashed line shows a fitted power law as
indicated in the legend.

3.5. Internal gravity waves and mean flows in the

stable layer

As a consequence of convective overshooting, internal

gravity waves are excited and propagate in the stable

layer. Interestingly, together to these waves a mean

horizontal motion develops in the stable layer. In our

high-resolution experiments this motion reverses sign

periodically as it can been seen in Fig. 9. The left

panels show snapshots of Θ′ in the stable layer. The

gravity waves are unresolved in the simulation FD128,

barely captured in FD256, and resolved in FD1024 and

FD2048. The right panels show the temporal evolu-

tion of u, where the overline represents average over the

horizontal direction, during the last 20 years of the sim-

ulated time. For the case FD128 there is an unorga-

nized, low amplitude pattern at the very upper fraction

of the stable interior. For FD256 the mean flow is more

evident showing non-periodic reversals. For FD1024 a

well organized pattern of mean flow reversing sign every

∼ 1 yr emerges. The amplitude of this flow reaches 60

m/s which is of the same order of the horizontal mo-

tions in the convection zone. Finally, because of a small

viscosity, for FD2048 these motions have large ampli-

tudes, change direction in a random form and persist

for longer time at z ∼ 75 Mm forming two or three lay-

ers of mean-flow, u, at the same time. Similar results

were discussed for small viscosity simulations in Wedi &

Smolarkiewicz (2006). These motions are reminiscent of

the Earth quasi-biennial oscillation (Baldwin et al. 2001)

which are a consequence of interacting gravity waves

and depend on the kinematic viscosity of the medium

(Lindzen & Holton 1968; Holton & Lindzen 1972; Plumb

& McEwan 1978; Wedi & Smolarkiewicz 2006; Kim &

MacGregor 2001). If existing inside the solar radiative

zone, they may be relevant for the transfer of angular

momentum and may interact with large scale motions in

the convection zone, likely contributing to the formation

of torsional patterns. Since the goal of this work is ex-

ploring the role of numerical resolution, we postpone a

more detailed physical discussion on the physics of GW

and these mean-flows for future works.

4. CONCLUSIONS

Direct numerical simulations of natural systems at

high Reynolds numbers are unattainable for present su-

percomputers. Fortunately, the LES and ILES meth-

ods provide capabilities of reproducing turbulent flows.

However, for systems with scarce observational con-

straints, such as stellar convection zones, determining

whether LES or ILES capture the system’s physics is a

challenging task.

The aim of this paper was to address this problem by

exploring the numerical convergence in ILES simulations

of turbulent convection in two dimensions. The model

is constructed over the anelastic set of equations solved

by the EULAG-MHD code. It considers an atmosphere

with characteristics of the solar interior, including a frac-

tion of the radiative zone and the convection zone. The

simulations were performed with resolution increasing

from 642 up to 20482 grid points. The results present

the values of the effective and turbulent viscosities and

other integral characteristics of the numerical solutions.

Another goal was to observe how the large scales behave

when interacting with the progressively smaller resolved

scales.

Spatial and temporal averages demonstrate that quan-

tities as the rms velocities have similar vertical profiles

for resolutions even as coarse as N ∼ 128. We noticed

that the structure of the flow, characterized by narrow

downdrafts and broad upflows crossing the entire con-

vective layer of the model, is conserved even when these

motions interact with the smallest structures (Figs. 2
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Figure 9. Left panels: snapshots of Θ′ for simulations (a)
FD128, (b) FD256, (c) FD1024, and (d) FD2048. The as-
pect ratio of this panel is modified for visualization purposes.
Right panels: Propagation in the plane (t, z) of the veloc-
ity component, u, averaged over the horizontal direction, x.
The time corresponds to the last 20 years of evolution during
steady state.

and 5). This result stands in contrast to the results

of 2D ILES of Porter & Woodward (1994) where the

progressive development of small scales leads to the de-

struction of the large structures. This difference might

arise from the differences between PPM and MPDATA

ILES formulations, but mostly from the compressible

character of their simulations which imposes structural

changes in the temperature and density profiles as the

effective viscosity decreases. These changes result in dif-

ferent convective models for each resolution.

As for the spectral behavior, we notice that for res-

olutions with N & 128, the kinetic energy spectra are

similar at the middle and the top of the convection zone,

whereas the length of the inertial range increases with

N reaching more than two decades for our highest res-

olution model. As for the turbulent spectrum of the

variance of Θ′, in the top, it reflects the lack of reso-

lution of the FD64-FD256 simulations due to the small

density scale height. Convergence is observed, however,

in simulations with N & 512. In the middle of the con-

vection zone, simulations with N = 128 or more grid

points agree in the injection and inertial ranges.

A deeper analysis of the energy balance in the Fourier

space allows us to estimate the effective viscosity of the

simulations as a function of the wavenumber. For the

large scales, the profiles of νeff in all the simulations are

slightly decreasing with k, and with magnitudes progres-

sively decreasing with N . For N ≥ 256 there is a range

of intermediate scales where the values and profiles of

νeff closely match. These profiles separate for the small-

est resolved scales. For the smallest scales the profiles of

νeff increase with k for resolutions with N ≤ 256 but re-

main roughly constant for N ≥ 512. Our interpretation

of this change has to do with the simplified assumptions

made for the residual of the balanced Eq. (2) in the

steady state. We assumed that the residual corresponds

only to an effective viscosity depending on the scale but

constant in time. However, in MPDATA the numeri-

cal formulation contains dissipative as well as dispersive

terms, both intermittent in time and space. The contri-

bution of the dispersive terms is mediating the transfer

of energy between scales. Thus, the increasing of νeff for

the smaller scales in the low-resolution cases can be re-

lated to the enhanced sub-grid scale contribution of the

numerical algorithm. Yet, the small-scale contribution

is thoroughly resolved at higher resolutions. Therefore,

the profile of νeff would incorporate only viscous dissi-

pation.

Averaging νeff(k) over the dissipative, Kolmogorov,

scales shows a power law relation between the effective

viscosity and the resolution, νeff ∝ N−2.7. Note, how-

ever, that the curve could be fitted by 2 different power

laws for N ≤ 256 and N ≥ 512, which supports our

conclusion above on the SGS contributions. With the

obtained values of νeff the effective Reynolds numbers

the simulations span between ∼ 1 and ∼ 104. On the

other hand, the values of the turbulent eddy viscosity, νt,

are of the order of 108 m2/s and are barely dependent

of the grid size. Only the simulation FD64 has aver-

age effective viscosity larger than this value. Thus, in
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spite that small-scale structures are sharply resolved in

high-resolution cases, the dynamics of the system is de-

termined by the turbulence which has an eddy Reynolds

number of the order of 10. We argue that the diagnos-

tics observed for simulations FD512-FD2048 indicated

convergent well-resolved turbulence. The fact that the

properties of the large scales in simulations FD128 and

FD256 behave alike to the better resolved ones evidences

the SGS contribution of the advection solver MPDATA.

The convergent LES simulations of Porter & Wood-

ward (2000); Sullivan & Patton (2011) obtained results

in agreement to the ones outlined here. Alternatively,

the DNS simulations of Featherstone & Hindman (2016)

indicate that decreasing the dissipation coefficients di-

minishes the energy of the large scales in benefit of the

smallest ones.

Despite the simulations presented here being 2D, the

results of this research support the idea that ILES are

efficient in capturing the dynamics of turbulent systems.

A note of caution is due here for regions where the ther-

mal stratification enforces the formation of small struc-

tures not well resolved by the grid as in cases FD64 and

FD128. Having a non-homogeneous grid could be ap-

propriate for these situations. Nevertheless, if the model

encompasses both stable and unstable layers, as in our

case, high resolution is necessary to capture the dynam-

ics in the stable layer dominated by gravity waves. This

is demonstrated in § 3.5 where mean oscillatory motions

emerge only for sufficiently low effective viscosities. A

relevant question raised by this study is how much the

interaction between these two layers modifies the dy-

namics of the turbulent convection. Simulations of con-

vection in 3D and/or in different geometries that may

help answering this question will be explored in future

work.
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